Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Burstein-Moss shift of n-doped In0.53Ga0.47As/InP

Identifieur interne : 010071 ( Main/Repository ); précédent : 010070; suivant : 010072

Burstein-Moss shift of n-doped In0.53Ga0.47As/InP

Auteurs : RBID : Pascal:01-0239012

Descripteurs français

English descriptors

Abstract

We have evaluated the Burstein-Moss (BM) shift at 300 K in seven samples of n-In0.53Ga0.47As (1.3×1016≤n≤3.9×1019cm-3) lattice matched to InP using spectral ellipsometry in the range of 0.4-5.1 eV. The data have been fitted over the entire spectral range to a model reported by Holden [in Thermphotovoltaic Generation of Electricity, edited by T. J. Coutts, J. P. Brenner, and C. S. Allman, AIP Conf. Proc. No. 460 (AIP, Woodbury, NY, 1999), p. 39], based on the electronic energy-band structure near critical points plus relevant discrete and continuum excitonic effects. A Fermi-level filling factor in the region of the fundamental gap has been used to account for the BM effect. While our data exhibit nonparabolic effects, with a blueshift of 415 meV for the most highly doped sample, we did not observe the Fermi-level saturation at 130 meV for n≥1019cm-3 reported by Tsukernik [Proceedings of the 24th International Conference on the Physics of Semiconductors, Jerusalem, 1998, edited by D. Gershoni (World Scientific, Singapore, 1999)]. Our BM displacements are in agreement with a modified full-potential linearized augmented-plane-wave calculation [G. W. Charache , J. Appl. Phys. 86, 452 (1999)] plus possible band-gap-reduction effects.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0239012

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Burstein-Moss shift of n-doped In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As/InP</title>
<author>
<name sortKey="Munoz, Martin" uniqKey="Munoz M">Martin Munoz</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Physics Department and New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Physics Department and New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>IBM Thomas J. Watson Research Center, Route 134, Post Office Box 218, Yorktown Heights, New York 10598</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>IBM Thomas J. Watson Research Center, Route 134, Post Office Box 218, Yorktown Heights</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pollak, Fred H" uniqKey="Pollak F">Fred H. Pollak</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Physics Department and New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Physics Department and New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kahn, Mathias" uniqKey="Kahn M">Mathias Kahn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000</wicri:regionArea>
<wicri:noRegion>Haifa 32000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ritter, Dan" uniqKey="Ritter D">Dan Ritter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000</wicri:regionArea>
<wicri:noRegion>Haifa 32000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kronik, Leeor" uniqKey="Kronik L">Leeor Kronik</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Physics Department and New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Physics Department and New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Guy M" uniqKey="Cohen G">Guy M. Cohen</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Physics Department and New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Physics Department and New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">01-0239012</idno>
<date when="2001-06-15">2001-06-15</date>
<idno type="stanalyst">PASCAL 01-0239012 AIP</idno>
<idno type="RBID">Pascal:01-0239012</idno>
<idno type="wicri:Area/Main/Corpus">011189</idno>
<idno type="wicri:Area/Main/Repository">010071</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Critical points</term>
<term>Ellipsometry</term>
<term>Energy gap</term>
<term>Excitons</term>
<term>Experimental study</term>
<term>Fermi level</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Interface states</term>
<term>Semiconductor superlattices</term>
<term>Spectral shift</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7321C</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Ellipsométrie</term>
<term>Déplacement spectral</term>
<term>Exciton</term>
<term>Superréseau semiconducteur</term>
<term>Niveau Fermi</term>
<term>Etat interface</term>
<term>Point critique</term>
<term>Bande interdite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have evaluated the Burstein-Moss (BM) shift at 300 K in seven samples of n-In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As (1.3×10
<sup>16</sup>
≤n≤3.9×10
<sup>19</sup>
cm
<sup>-3</sup>
) lattice matched to InP using spectral ellipsometry in the range of 0.4-5.1 eV. The data have been fitted over the entire spectral range to a model reported by Holden [in Thermphotovoltaic Generation of Electricity, edited by T. J. Coutts, J. P. Brenner, and C. S. Allman, AIP Conf. Proc. No. 460 (AIP, Woodbury, NY, 1999), p. 39], based on the electronic energy-band structure near critical points plus relevant discrete and continuum excitonic effects. A Fermi-level filling factor in the region of the fundamental gap has been used to account for the BM effect. While our data exhibit nonparabolic effects, with a blueshift of 415 meV for the most highly doped sample, we did not observe the Fermi-level saturation at 130 meV for n≥10
<sup>19</sup>
cm
<sup>-3</sup>
reported by Tsukernik [Proceedings of the 24th International Conference on the Physics of Semiconductors, Jerusalem, 1998, edited by D. Gershoni (World Scientific, Singapore, 1999)]. Our BM displacements are in agreement with a modified full-potential linearized augmented-plane-wave calculation [G. W. Charache , J. Appl. Phys. 86, 452 (1999)] plus possible band-gap-reduction effects.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>63</s2>
</fA05>
<fA06>
<s2>23</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Burstein-Moss shift of n-doped In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As/InP</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MUNOZ (Martin)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>POLLAK (Fred H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KAHN (Mathias)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RITTER (Dan)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KRONIK (Leeor)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>COHEN (Guy M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Physics Department and New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455</s1>
</fA14>
<fA14 i1="04">
<s1>IBM Thomas J. Watson Research Center, Route 134, Post Office Box 218, Yorktown Heights, New York 10598</s1>
</fA14>
<fA20>
<s2>233302-233302-3</s2>
</fA20>
<fA21>
<s1>2001-06-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2001 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>01-0239012</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CC</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have evaluated the Burstein-Moss (BM) shift at 300 K in seven samples of n-In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As (1.3×10
<sup>16</sup>
≤n≤3.9×10
<sup>19</sup>
cm
<sup>-3</sup>
) lattice matched to InP using spectral ellipsometry in the range of 0.4-5.1 eV. The data have been fitted over the entire spectral range to a model reported by Holden [in Thermphotovoltaic Generation of Electricity, edited by T. J. Coutts, J. P. Brenner, and C. S. Allman, AIP Conf. Proc. No. 460 (AIP, Woodbury, NY, 1999), p. 39], based on the electronic energy-band structure near critical points plus relevant discrete and continuum excitonic effects. A Fermi-level filling factor in the region of the fundamental gap has been used to account for the BM effect. While our data exhibit nonparabolic effects, with a blueshift of 415 meV for the most highly doped sample, we did not observe the Fermi-level saturation at 130 meV for n≥10
<sup>19</sup>
cm
<sup>-3</sup>
reported by Tsukernik [Proceedings of the 24th International Conference on the Physics of Semiconductors, Jerusalem, 1998, edited by D. Gershoni (World Scientific, Singapore, 1999)]. Our BM displacements are in agreement with a modified full-potential linearized augmented-plane-wave calculation [G. W. Charache , J. Appl. Phys. 86, 452 (1999)] plus possible band-gap-reduction effects.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C20D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7321C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Ellipsométrie</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Ellipsometry</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Déplacement spectral</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Spectral shift</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Exciton</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Excitons</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Superréseau semiconducteur</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Semiconductor superlattices</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Fermi level</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Etat interface</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Interface states</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Point critique</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Critical points</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fN21>
<s1>162</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0123M000718</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 010071 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 010071 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:01-0239012
   |texte=   Burstein-Moss shift of n-doped In0.53Ga0.47As/InP
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024